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Abstract
RET-activating gene alterations are present in 1%–2% of non-small cell lung cancers. Therapeutics that
specifically and effectively target these RET alterations have recently been approved. Broad-based
genomic testing, inclusive of RET fusions, is recommended by National Comprehensive Cancer Network
(NCCN) and ASCO/AMP/CAP guidelines for patients with advanced non-small cell lung cancer, but
screening patients for such rare biomarkers in drug development can be impractical and costly. Here,
we develop and validate a deep neural network pipeline to detect RET alterations from readily available
hematoxylin and eosin (H&E)-stained images. As the pipeline is intended for prescreening and sample
prioritization for genomic testing for RET fusions during drug development, 100% sensitivity was a pri-
mary objective to ensure that no RET fusion-positive samples were missed. In total, 523 images were
used for model development and partitioned for training (70%), validation (15%), and testing (15%). The
approach resulted in 100% sensitivity and 72.4% specificity, corresponding to an area under receiver
operating characteristic curve (AUROC) of 0.86 on the test set. An additional dataset of 121 images was
used for an independent blind assessment. The overall sensitivity of the model on the second independ-
ent dataset was 100% with a 63.3% specificity and an AUROC of 0.82. All 20 RET fusion-positive cases in
this dataset were correctly detected with no false negative cases and 36 false positive cases in the blind
dataset. These findings suggest deep learning can be used as a complementary method to prescreen
H&E-stained images and enhance the rate of RET alteration positivity in subsequent genomic testing.
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Introduction
Lung cancer is one of the deadliest cancers with over 75%
of patients losing their battle within 5 years of diagnosis.1

In 2020, there were 2.21 M new cases of lung cancer
which represented 11.4% of all new cancers and was sec-
ond only to breast cancer. However, the mortality rate of
breast cancer was 6.9% with 685 K patients compared to
18% or 1.80 M patients for lung cancer.2 More people suc-
cumb to lung cancer than to colon, breast, and prostate
cancers combined.3 Genomic alterations in several genes
including KRAS, EGFR, and ALK can drive the development
and progression of non-small cell lung cancer (NSCLC).
These genomic alterations occur with a prevalence of 15%–
25%, 5%–15%, 3%–7%, respectively.4–6 Specific genomic
drivers can influence therapeutic decision-making by pre-
dicting treatment response. For example, genomic alterations
in EGFR are strongly predictive of favorable responses to
EGFR-targeted therapies in NSCLC.7 More recently, RET
has emerged as an oncogenic driver in NSCLC.8–11

RET is a glycoprotein receptor with tyrosine kinase
activity whose activation via autophosphorylation trig-
gers downstream cell proliferation and survival pathways
including RAS-MAPK, PI3K-AKT, JAK-STAT, PLC-
gamma, and PKC.8,10,12,13 The RET gene, located on the
long arm of chromosome10 (10q11.21), is subject to
gain-of-function gene-fusions through rearrangements that
result in constitutive receptor activation.8–10,14,15 RET gene
fusions are detected in 5%–10% of papillary thyroid can-
cer (PTC) and 1%–2% of NSCLC among others.8–11,13,16

RET fusions do not tend to co-occur with other major
NSCLC driver alterations (e.g., KRAS or EGFR muta-
tions, ALK or ROS1 rearrangements) and are associated
with low tumor mutation burden and decreased expres-
sion of PD-L1.17,18 In 2020, two selective RET inhibitors
selpercatinib and pralsetinib, received FDA approval for
metastatic RET fusion-positive NSCLC, advanced or met-
astatic RET fusion-positive thyroid cancer requiring sys-
temic therapy that are radioactive iodine-refractory, and
locally advanced or metastatic RET fusion-positive solid
tumors.16,19–21 A recent study of selpercatinib in patients
with RET fusion-positive tumors (open label) showed a
median PFS was 22.0 months in treatment-naïve patients,
35% of whom were alive and progression-free at the data
cutoff (median follow-up of 21.9 months).22

Genomic testing allows for tailored therapeutics based
on a patient’s specific tumor molecular profile.23,24 For
these reasons, National Comprehensive Cancer Network
(NCCN) and ASCO/CAP/AMP guidelines recommend
broad-based genomic testing of all patients with metastatic
NSCLC to identify actionable mutations. However, during
clinical development, the cost of genomic profiling of
NSCLC presents a significant barrier to patient screening
and enrollment, particularly when the frequency of target-
able genomic modifications is low (e.g., RET fusions 1%–

2%) or in earlier stage disease where routine NGS testing
is uncommon.23,24 Recent advancements in artificial intelli-
gence to rapidly detect genomic alterations from histologi-
cal images are a viable prescreening tool to overcome
these barriers. Investigators leveraged readily available
patient datapoints such as hematoxylin and eosin (H&E)-
stained slides from biopsies to detect genomic alterations
and build molecular profiles in breast, liver, and colo-
rectal cancers.25–28 In NSCLC, a deep learning approach
was implemented to detect genomic alterations in com-
mon oncogenic drivers such as KRAS, EGFR, STK11,
FAT1, SETBP1, and TP53 with area under receiver oper-
ating characteristic curve (AUROC) ranging from 0.73 to
0.86.29 Mutations in SPOP, an established tumor sup-
pressor gene, can be predicted from H&E samples in
prostate cancers using pretrained ResNET models.30–32

These results support the deployment of lower cost algo-
rithmic approaches to prescreen and prioritize patients
for more expensive genomic testing in a clinical devel-
opment setting.

In this work, we designed and developed a novel work-
flow comprised of deep learning models and algorithms
for processing and classification of H&E-stained histopa-
thology images in a NSCLC cohort to classify a small
subpopulation of patients with RET fusions. This unique
approach to image normalization and processing dimin-
ishes the impact of biases from digitization artifacts, tissue
preparation, and additional confounders. In the datasets
evaluated, the predictive model achieved 100% sensitivity
while maintaining greater than 50% specificity, prioritizing
at-need patients while reducing costs for comprehensive
screening of patients for clinical trial sponsors.

Methods
Dataset
In total, 621 digital H&E NSCLC images were selected
for use in this project from two clinical trials: Libretto-001
(NCT03157128) and Libretto-431 (NCT04194944).19,33

Trial participants included men and women with both pri-
mary and metastatic NSCLC disease. Current or former
smokers were not excluded and additional detail on patient
demographics, prior treatments, and disease stage can be
found in earlier publications.19,33 Consent documents were
carefully reviewed to ensure that data utilization was con-
sistent with the terms therein. Stained slides were initially
prepared and digitized across four contributing data sites
and underwent manual quality control for inclusion.
Formalin-fixed core needle and tumor resection samples of
NSCLC were routinely processed to paraffin block, sec-
tioned at 5-micron thickness, stained with H&E-stained
slides, and scanned on the Leica AT Turbo or the 3D His-
tech Pannoramic P1000 scanning system with magnifica-
tion at 20· or 40·. Scanned images were stored in SVS or
MRXS format, respectively, and uploaded to a secure
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online storage location. Images were initially manually
inspected by a trained pathologist for histology and scan-
ning quality. Images of thick sections, insufficient tumor,
all necrosis, or extensive out of focus areas were excluded.
The RET fusion status of these samples was determined in
a certified laboratory with the use of NGS, fluorescence in
situ hybridization, or polymerase-chain-reaction assay.

All 266 images from Libretto-001 were exclusively RET
fusion-positive as they were collected from enrolled partici-
pants only, whereas the 355 images from Libretto-431
included both RET fusion-positive and -negative samples as
they were collected during screening for the trial. The
images were also collected from primary and metastatic
samples (Supplementary Table S1). The trial image dataset
was partitioned into two datasets, a dataset of 500 samples
which was initially used for model development and a
second dataset of 121 images that was held back for blind
evaluation of model performance. Several factors were con-
sidered when partitioning the trial images: all 266 Libretto-
001 were SVS format, RET fusion-positive, and allocated
exclusively to the model development dataset, whereas 355
images from Libretto-431 were split across the model devel-
opment or blind evaluation dataset balancing for source (pri-
mary, metastatic, or unknown), RET fusion status, and data
site. As a result, the 500-image model development dataset
was sourced from 215 metastatic, 236 primary, and 49
unknown samples; contained 284 RET fusion-positive and
216 RET fusion-negative samples; and included 111 MRXS
and 389 SVS image types. Please note that the MRXS
images were only used for tumor model development,
whereas SVS images were used for both tumor model and
RET model development. The 121-image blind dataset was
sourced from 47 metastatic, 54 primary, and 20 unknown
samples; contained 20 RET fusion-positive and 101 RET

fusion-negative samples; and included-121 SVS image
types. The trial image datasets are detailed in Supplementary
Table S1. The model development dataset was supple-
mented with an additional 23 images from the NCI
Genomic Commons from the Cancer Genome Atlas-Lung
Adenocarcinoma (TCGA-LUAD) cohort of images.31,32

This brought the total images in the model development
dataset to 523. During model development, this dataset was
further divided into a training set (70%), validation set
(15%), and test set (15%) as described in Figure 1.

Pathology image annotations and manual
segmentation review
Further histopathologic annotations were performed by a
board-certified expert pathologist who also conducted a
secondary general quality check of the cases. This included
confirmation of appropriate staining, scanning quality,
and confirmation of the presence of lung tissue and
metastasis. No images were excluded after the secondary
quality assessment.

Pathologist image annotations were performed in three
stages. The first stage included the annotation of regions in
the TCGA-LUAD cohort to build the underlying tumor
segmentation models for tumor and nontumor regions. The
second manual annotation stage was incorporating those
from the same regions in the trial set of images of SVS for-
mat. A final annotation round was necessary to adapt the
segmentation model to the MRXS image file format. The
quality of the tumor segmentation model was visually
assessed by our pathology team. Supplementary Figure S1
contains examples of images that were annotated and used
for development of tumor segmentation model. Annota-
tions included the following labels: “tumor,” “nontumor,”

Fig. 1. Data utilization and split. In total, 728 digital H&E NSCLC images were used for this project.
The initial model development dataset consisted of 500 images which were used for model development
and an additional 121 images were held back for a blind assessment. Bio-AI Health further divided the
model development dataset set of images used for model development into a training set (70%), validation
set (15%), and test set (15%). H&E, hematoxylin and eosin; NSCLC, non-small cell lung cancer.

AI MODEL FOR RET ALTERATION DETECTION USING H&E IMAGES 3



“ignore,” and were incorporated into PREDICT-X plat-
form and used during model development.

Tumor recognition and segmentation
The tumor segmentation model used for selection of tumor
regions in images was developed using a three-step approach
(Fig. 2). Step 1 involved the optimization of a model previ-
ously developed for tumor segmentation using TCGA-
LUAD data only. Briefly, a VGG19 architecture was used
to generate a prediction label on tiles sized 256 · 256 with
a binary classification of tumor vs nontumor.34 This deep
learning model includes 147 million parameters and 26
layers. The last layer was a softmax, where the output of
the model for one tile was a vector with two probability
scores corresponding to each of the classes. The class with

the highest score was used as the predicted label for the
tile. In step 2, additional annotated regions from trial cohort
(SVS format only) images were used to optimize the net-
work for the metastatic biopsy tissue. Finally, step 3

Fig. 2. Tumor Segmentation model workflow. Development of a NSCLC tumor segmentation model
was constructed in three steps. Initial steps used TCGA-LUAD images and corresponding annotations
and yielded a validation accuracy of 74.66%. Step 2 added annotations from clinical trial Leica based
images which resulted in a validation accuracy of 81.26%. Step 3 added 3D Histech images and
annotations and saw a final validation accuracy on model of 82.51%. NSCLC, non-small cell lung cancer;
TCGA-LUAD, Cancer Genome Atlas-Lung Adenocarcinoma.

Table 1. Detailed Metrics of Image Tiles Used for Optimization
and Development of the Tumor Segmentation Model

Region Train Validation Test

Step 1 (TCGA-LUAD
only)

Tumor 10,806 5,510 5,003
Nontumor 10,748 5,533 4,975

Step 2 (Trial SVS) Tumor 41,651 20,687 23,056
Nontumor 4,204 2,894 2,804

Step 3 (Trial MRXS) Tumor 6,937 2,000 2,000
Nontumor 6,851 2,000 2,000

TCGA-LUAD, Cancer Genome Atlas-Lung Adenocarcinoma.
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involved addition of annotated patches from the MRXS
scanner to account for the scan-specific differences in the
file format. Table 1 summarizes the number of tiles used in
each phase of development during each step.

All steps involved a similar methodology for model
optimization and development except for image sources.
Briefly, images were partitioned into tiles and used for
the optimization of a previously developed convolutional
neural network (CNN) model on PREDICT-X platform
for NSCLC tumor detection. Pathology-labelled tile
regions were split into a training set, a validation set, and
a test set (70% train, 15% validation, and 15% test).
Background tiles were easily selected and excluded based
on a color intensity threshold 220. The predicted proba-
bilities of image tiles were summarized into a heatmap of
tumor probability, where each pixel in the heatmap corre-
sponded to an image tile in the original pathology image.
The results were also visually inspected and evaluated by
an anatomical pathologist. Once an accuracy of >80%
was achieved and a satisfactory performance report was
given by a certified pathology visual inspection, tiles
were saved and used for subsequent development.

Tile image QC and normalization
The PREDICT-X platform contains a previously devel-
oped QC model that comprises of a modified version of
ResNet, which excludes unwanted tiles based on

specific content.35 We further optimized this model
against the clinical trial dataset to detect and exclude
image artifacts that can have a negative impact on the
RET fusion status prediction model. This optimization
included tile sets labelled as TAR (tiles that contain
anthracotic pigmentation) and RBC (tiles that contain
numerous red blood cells) to detect these problematic
tiles for exclusion from downstream steps. Figure 3
shows examples of tiles that were used for further
training the QC model and Table 2 describes the
amount of data used for training and optimization of
model. Each image had between 0% and 5% of total
tiles excluded from the QC model which had an overall
performance accuracy of 0.95.

To overcome the variability in staining and image
processing from multiple data sites and scanners, the
Reinhard Color Normalization approach was applied.36

The technique was initially used in traditional computer
vision problems and was adapted for color correction
and normalization in H&E-stained digital histopathology
slides.37,38 The approach uses a reference images color
profile to transform a source image. As a middle ground,
the source image, which is comprised of RGB channels,
is converted to lab color space proposed by Ruderman
et al., using set of linear transformations.39 This aids in
matching the mean and standard deviation of the two
images (source and reference image) in the lab color
space. Below is a set of equations which converts the

Fig. 3. Pathology Annotations—Representative examples of images that were annotated and used for
development of tumor segmentation model. Annotations included the following labels: “tumor,” “nontumor,”
“ignore,” and were incorporated into Bio-AI Health platform and used during model development.
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original RGB channel source image into lab color
space:

lmapped =
loriginal � loriginal

l̂original
l̂target þ ltarget (1)

amapped =
aoriginal � aoriginal

âoriginal
âtarget þ atarget (2)

bmapped =
boriginal � boriginal

b̂original

b̂target þbtarget (3)

Supplementary Figure S2 contains representative exam-
ples of a tile image before normalization and after normal-
ization along with the reference tile image used for the
transformation.

RET model
The PREDICT-X platform inspired by Neural Architec-
tural Search (NAS) was used to build a deep learning
probability model to determine RET fusion status in digi-
tal H&E slides.40 NAS does a search across different
architectures on a small subsample of data and chooses
the right one for model building on the large sample set.
The PREDICT-X platform was used as a pretrained
model to further optimize for RET fusion status predic-
tion. Because of data being generated from multiple
sources and imbalances between RET fusion-positive
and RET fusion-negative cases, we used an ensemble
classification approach with different combinations of
cases as well as different CNN models to find the opti-
mal model for classifying the RET fusion status. K-fold
cross validation was applied. In addition, image augmen-
tation techniques were applied to up-sample the data.
This included rescaling, horizontal, and vertical flipping,
zooming in and out of random images, varying bright-
ness intensity, and shifting image width and height. In
total, over 30 models were developed. These models
were developed and tested using different convolutional
neural network architectures as well as different optimi-
zation parameters. The composition of the training and
validation data was determined after an extensive analy-
sis of the available data and interpretation of interim

models. In the end, two separate models were retained
using two separate deep neural networks and an ensem-
ble approach generated the final prediction. We used a
model ensemble strategy where we trained on more posi-
tive samples from multiple locations for the first model
and for the second model, we trained it on more negative
samples. We used NASnet architecture for both and later
assigned percentage weightage to get the right predic-
tion.40 Each CNN model was trained and developed on
image tiles independently of each other and combined to
generate the final prediction on a patient level. The pre-
diction is generated by aggregating tiles within a patient
image using a positivity threshold of 0.4 to classify each
case as RET fusion-positive or -negative. Prediction
results from the blind test set are described in detail for
the ensemble model. The final threshold was determined
after extensive analysis of all cases in model develop-
ment dataset to eliminate all false negatives at the
expense of false positives. Model performance metrics
such as AUROC, which plots the relationship between
true positive rate and false positive rate across different
predictive thresholds, were used to determine the model
quality. Because of lack of balance in the MRXS training
set, and the inherit differences noted on the images when
compared to SVS images, the MRXS dataset was only
used for development of a tumor model. Development of
the RET predictive model was limited to the SVS images
only. There were not enough MRXS balanced images to
develop a MRXS-specific model as only five images in
the set were positive.

Results
The BioAI PREDICT-X platform (a secure statistical
machine learning and data management environment
that houses a proprietary high-performance computing
workflows that automate multimodal data processing to
develop, deploy, and optimize the latest AI strategies)
was chosen for this study after outperforming two other
proprietary software platforms that failed to positively
detect cases in a blinded preassessment. Briefly, a dataset
of 500 NSCLC H&E-stained images produced from sam-
ples collected from the Libretto-001 (NCT03157128) and
Libretto-431 (NCT04194944) clinical trials was assembled
for model development in this study.19,33 This dataset was
supplemented with 23 images from TCGA-LUAD dataset
available through NCI Genomic Commons at https://gdc
.cancer.gov/. Trial images included primary, metastatic,
and unknown tissue biopsies from four different data sites
and two image types (See Supplementary Table S1 and
Methods).19,33 The images were generated using Leica
Aperio Scanscope AT whole slide scanner platform, which
generates a virtual slide file with a “.svs” extension (SVS,
n = 389) as well as the 3D Histech whole slide scanner
which generates a virtual slide file with a “.mrxs”

Table 2. Detailed Metrics of Image Tiles Used for
Optimization and Development of the Predict-X QC Model

Tile label Train Validation Test

Good 3,731 799 799
TAR 1,175 252 252
RBC 3,097 663 663

RBC, tiles that contain numerous red blood cells; TAR, tiles that con-
tain anthracotic pigmentation.
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extension (MRXS, 111). These images were produced at
four different anonymized locations. The distribution of
images across RET fusion status, data sites, and image
types is shown in Supplementary Figure S3. All TCGA-
LUAD images were scanned on the Leica Aperio Scan-
scope platform (i.e., SVS) and contained a mix of RET
fusion-positive and negative samples. In addition, a sepa-
rate set of 121 images from the Libretto-431 trial was held
out of the model development dataset and used only as a
blind evaluation dataset. This hold-out dataset included
primary (54), metastatic (47), and unknown (20) tissue
biopsies in all 121 (SVS) image types.

The overall PREDICT-X workflow used to develop
the RET classifier is illustrated in Figure 4A. First,
images were assessed with an automated tumor segmen-
tation model to select for tumor positive regions within
tissue. Segmented tumor tissues were tiled with a deep
learning model to specifically eliminate tiles containing
artifacts that negatively impacted model development
(see Methods). Next, tumor tiles underwent a color-
normalization process before the final step of RET classi-
fication. Multiple models were developed and optimized
for each of these major steps and iterated on annotations,
as described in more detail below. Figure 4B summa-
rizes this workflow.

H&E-stained images, stored as SVS and MRXS,
showed clear differences in size, pixel resolutions, and
spectral properties (Fig. 5). Although pixel size and other
visually detectable differences between the image formats
can adversely influence model performance, color

normalization was used to correct for spectral differences.
The distribution of RET fusion-positive and RET fusion-
negative images (ground truth) in the model development
dataset was 72%/28% for the SVS images and 5%/95%
for the MRXS images, respectively. Subsequently, MRXS
images were only used during the tumor model develop-
ment phase of the project as the balance of positive and
negative RET fusion samples does not allow for predic-
tive model development (Supplementary Fig. S3).

From the TCGA-LUAD cohort, in total 1,606 annotated
areas covering 24,001,164 mm2 of tissue were assessed,
including 806 tumor annotations (12,570,264 mm2) and
800 nontumor annotated regions (11,530,900 mm2). Train-
ing images from the trial dataset yielded an additional
5,781,162,847 mm2 of annotated regions. Further insights
during model development showed that additional nontu-
mor area was necessary to increase the recall/precision for
tumor detection. Therefore, additional 108 annotations
covering 155,766,722 mm2 were performed. These annota-
tions were used for the identification and selection of
tumor tiles for subsequent RETmodel development.

Figure 2 summarizes the three-step development of the
NSCLC tumor segmentation model. The goal of segmen-
tation was to annotate tiles from the H&E images, which
initially yielded a validation accuracy of 74.66%, 81.26%
following step 2, and finally reaching 82.51% after step 3.
In addition, only individual tiles that were selected as
tumor tiles with probability score of >0.9 were used for
RET model development and analysis. Supplementary
Figure S4 shows representative heatmap images with

Fig. 4. (A) Overall workflow used to develop the RET fusion status classifier. Briefly, images were
segmented into their tumor components and corresponding tiles are generated. The tumor tiles were
then cleaned of any artifacts that had a negative impact on model development and color normalized
before selection of RET fusion status. (B) Summarizes the analysis performed demonstrating a single
image workflow for demonstration purposes.
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corresponding tumor tiles. A high-resolution automated
QC tool was developed, which identifies artifacts and
abnormalities in tumor tiles that compromise model train-
ing and performance. Once tumor tiles were selected by
the segmentation model, they were further filtered using
the QC tool (see Methods). This resulted in the removal of
approximately 5% of tiles from each case owing to abnor-
mality detection. Supplementary Figure S5 shows the
results and performance metrics of the QC tool. A high
degree of spectral variability was observed on images
owing to variability across the data sites from which the
images were sourced. To correct for this variation, we nor-
malized all tumor tiles using the Reinhard Color Normal-
ization approach.36 Representative images before and after
normalization are shown in Supplementary Figure S2.

Because of observed differences in RGB channels
between MRXS- and SVS-based images (Fig. 5) and chal-
lenges combining these image types, RET fusion predictive
model development was focused on the SVS set of images
only. Furthermore, the limited number and diversity of
RET fusion-positive images in the MRXS format (only
five and all images were from data site 3) meant that
developing and validating a RET fusion status detection
model specific to MRXS was not possible. Therefore, the
MRXS images, while useful for developing the tumor

segmentation model, were not considered further for the
RET-alteration prediction model. The PREDICT-X plat-
form used a subsequent ensemble classification approach
combining 2 different CNN models. The first model was
trained to specifically detect the positive RET fusion signal
whereas the second model was trained to detect the nega-
tive cases. The ensemble approach was powered to achieve
a 100% sensitivity to ensure that no positive cases were
missed. A conservative classification threshold of 0.4 was
used to classify positive cases, resulting in a higher number
of false positives while ensuring no false negatives were
observed. The overall results of the initial test set are pre-
sented in Figure 6A. This strategy resulted in a measured
sensitivity of 100%, a specificity of 72.4%, an AUROC of
0.86 (Supplementary Fig. S6A), and a corresponding bal-
anced accuracy of 72.7%. These results allowed us to end
development and deploy the finalized pipeline on the blind
evaluation dataset. The blind dataset consisted of 121 SVS
images (101 RET fusion-negative, 20 RET fusion-positive).
Although three cases were excluded from analysis as not
enough tumor tiles were detected by the model, similar per-
formance was achieved on the SVS images from blind data-
set (Fig. 6B). The overall sensitivity of the SVS images
from the blind dataset was 100% with a specificity of
63.3%, and an AUROC of 0.82 (Supplementary Figure S6

Fig. 5. Observed differences between Leica and 3D Histech scanned images. Aside from significant
spectral variances between the formats as demonstrated on (A) Leica and (B) 3D Histech images. In
addition, there is a measurable pixel resolution difference between (C) Leica and (D) 3D Histech formats.
(E) Plots highlight the spectral differences observed between the separate data sites (Cl-1, Cl-2, Cl-3,
Cl-4) where images were obtained. Plot shows distribution of red, green, and blue channels for each
tissue in development set. Note largest contrast between data sites which used MRXS format.
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images tested, all positive cases were correctly detected
with no false negatives and 36 false positives). Furthermore,
model performance was comparable between primary and
metastatic lesions.

Discussion
Advances in screening and targeted treatment approaches
ranging from low dose CT, genomic testing (KRAS,
ALK, EGFR), and novel therapeutics will be critical to
altering the course for lung cancer. Genomic screening
can be costly and may pose a challenge to trial sponsors
developing targeted therapies for relatively small popula-
tions. Here we propose leveraging deep learning method-
ologies to triage samples for drug development efforts
using readily available data for more extensive screening
with no further sample reduction. This can enable drug
development for rare alterations, lowering the cost and
sample quantity barriers to entry.

In this study, we developed a novel workflow for the
processing and classification of H&E-stained histopathol-
ogy images in a NSCLC cohort to predict a subset of
patients with RET alterations. This unique computational
approach to image normalization and processing dimin-
ishes the impact of biases from digitization artifacts, tis-
sue preparation, and additional confounders. As the
objective was to use this AI as a prescreening tool, before
genomic testing for trial enrollment, sensitivity was

prioritized, to ensure that no RET fusion-positive cases
were missed. The ensemble classification model that was
ultimately selected did meet this objective, achieving
100% sensitivity while maintaining >60% specificity.
Considering the rate of RET fusion-positivity in NSLC is
1%–2%, prescreening and prioritizing patients to achieve
>60% RET fusion-positivity will ultimately decrease the
cost for genomic testing in future drug development
efforts (e.g., for every 100 patients sequenced currently
only 1–2 return RET fusion-positive status, but with AI
prioritization this number would increase to >60 while
ensuring that no RET fusion-positive patients are not
sequenced due to 100% sensitivity).

It is important to note the focused use case of this
technology in the context of drug development that tar-
gets rare genetic alterations. In clinical practice, patholo-
gists and oncologists must test advanced lung cancer
patients for a multitude of genomic and proteomic
markers, that are relevant to their treatment decisions.
RET fusion status alone, regardless of outcome, would
not obviate the need for comprehensive screening in clin-
ical practice as the patient may harbor other targetable
biomarkers in this disease. Instead, the value of a pre-
screening predictor such as this is to enable screening for
rare biomarkers in the drug development space, where
genomic sequencing for the biomarker is not yet a clini-
cal priority but is of utmost importance for drug

Fig. 6. (A) The overall results of the internal test set where approach resulted in a measured sensitivity
of 100%, specificity of 72.2%, and overall accuracy of 84.6%. (B) Performance metrics for the held back
blind data set. It is important to note that three cases were excluded from analysis as not enough tumor
tiles were detected by the model. Measured sensitivity remained at 100%, specificity was 63.3%, and
overall accuracy of 69.5%.
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development. This study focused strictly on the tumor
region of tissue and future studies that include the tumor
microenvironment could explore whether inflammation,
infiltrative growth patterns, and tumor/stroma regions
improve model performance.

One limitation of the approach is that the model could
only be applied to SVS images. In this study, all MRXS
images came from the same data site and there were only
5 RET fusion-positive cases out of the total 111 MRXS
images in the dataset. Therefore, incorporating richer
datasets with a greater number of RET fusion-positive
samples from the MRXS image type are needed before
AI models can be fully developed to detect RET fusion
status. Another limitation of this study is that the dataset
that was withheld from model development for blind
testing was drawn from the same collection of images as
the model development dataset because of the need to
balance RET fusion status among datasets. Therefore, the
performance assessment in the blind dataset is likely
optimistic and the robustness of the model needs to be
examined in new data from independent sources. Relat-
edly, the rate of RET fusion positivity in both the model
development and blind assessment datasets was much
higher than in the general population; this makes it diffi-
cult to assess how the model will perform in a real-world
setting a priori.

Moreover, this work adds RET to the growing list of
gene alterations that can be detected from H&E stained
images, including KRAS, EGFR, STK11, FAT1, SETBP1,
and TP53 in NSCLC.29 Detection of chromosomal rear-
rangements in H&E stained lung cancer has been less
studied but our results indicate this is possible as well.41

Future innovations using interpretable machine learning
may lead to novel biological insights into the physical,
cellular, and morphological changes that underlie the
algorithmic detection of such alterations. It is important
to consider that the datasets used in this model were lim-
ited and expanding the scale and diversity of data for
training and validation will improve our understanding of
the generalizability and limitations of this approach in the
real-world. This work supports the feasibility of RET
fusion screening with AI and provides proof-of-concept
for how such models can be developed to detect rare
genetic alterations. Using AI-based models during initial
screening could speed up decisions for both patients and
drug developers as well as lower testing costs and tissue
use. However, this model was not tested or validated on
out-of-distribution data and this is necessary to ensure
robustness against myriad sources of bias such as diverse
imaging platforms, sampling, and staining protocols that
are introduced in the real world. Challenges remain when
applying such models to new datasets and wide adoption
in practice.
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